Reteaching

- The **sum of a finite geometric series** is $S_n = \frac{a_1(1-r^n)}{1-r}$, where a_1 is the first term, r is the common ratio, and n is the number of terms.
- The **sum of an infinite geometric series** with |r| < 1 is $S = \frac{a_1}{1-r}$, where a_1 is the first term and r is the common ratio. If $|r| \ge 1$, then the series has no sum.

Problem

What is the sum of the first ten terms of the geometric series

$$8 + 16 + 32 + 64 + 128 + \dots$$
?

$$a_1 = 8$$

 a_1 is the first term in the series.

$$r = \frac{16}{8} = \frac{32}{16} = \frac{64}{32} = \frac{128}{64} = 2$$

Simplify the ratio formed by any two consecutive terms to find r.

$$n = 10$$

n is the number of terms in the series to be added together.

$$S_{10} = \frac{8(1 - 2^{10})}{1 - 2}$$

Substitute $a_1 = 8$, r = 2, and n = 10 into the formula for the sum of a finite geometric series.

$$=\frac{8(-1023)}{-1}$$

Simplify inside the parentheses.

= 8184

Simplify.

Exercises

Evaluate the finite series for the specified number of terms.

1.
$$3 + 12 + 48 + 192 + \dots$$
; $n = 6$ **4095**

2.
$$8 + 2 + \frac{1}{2} + \frac{1}{8} + \dots; n = 5 \frac{341}{32}$$

3.
$$-10-5-2.5-1.25-\ldots$$
; $n=7-\frac{635}{32}$

3.
$$-10-5-2.5-1.25-\ldots$$
; $n=7$ $-\frac{635}{32}$ **4.** $10+(-5)+\frac{5}{2}+\left(-\frac{5}{4}\right)+\ldots$; $n=11$ $\frac{3415}{512}$

Evaluate each infinite geometric series.

5.
$$10 + 5 + 2.5 + \dots$$
 20 6. $-1 + \frac{2}{11} - \frac{4}{121} + \dots - \frac{11}{13}$ **7.** $\frac{1}{4} + \frac{7}{32} + \frac{49}{256} + \dots$ **2**

8.
$$\frac{1}{2} - \frac{1}{5} + \frac{2}{25} - \dots \frac{5}{14}$$

9.
$$-\frac{1}{6} + \frac{1}{12} - \frac{1}{24} + \dots$$

8.
$$\frac{1}{2} - \frac{1}{5} + \frac{2}{25} - \dots \frac{5}{14}$$
 9. $-\frac{1}{6} + \frac{1}{12} - \frac{1}{24} + \dots -\frac{1}{9}$ **10.** $20 + 16 + \frac{64}{5} + \dots$ **100**

11.
$$12 + 4 + \frac{4}{3} + \dots$$
 18

12.
$$\frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots \frac{1}{6}$$

11.
$$12 + 4 + \frac{4}{3} + \dots$$
 18 12. $\frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots \frac{1}{6}$ **13.** $\frac{2}{3} + \frac{2}{15} + \frac{2}{75} + \dots \frac{5}{6}$

_ Date _____

9-5

Reteaching (continued)

Geometric Series

Problem

Your neighbor hosts a family reunion every year. In 2000, it costs \$1500 to host the reunion. Their expenses have decreased by 10% per year by asking family members to contribute food and party supplies.

- a. What is a rule for the cost of the family reunion?
- **b.** What was the cost of the reunion in 2005?
- c. What was the total cost for hosting the family reunions from 2000 to 2009?

The cost is a geometric sequence that decreases by the same percent each year.

$$a_n = ar^{n-1}$$
 Write the explicit formula.

$$a_n = (1500)(0.90)^{n-1}$$
 Substitute $a_1 = 1500, r = 1 - 0.10 = 0.90$ in the explicit formula.

To find the cost of the reunion in 2005 (n = 6), substitute values into the explicit formula.

$$a_n = ar^{n-1}$$
 Write the explicit formula.

$$a_n = (1500)(0.90)^{6-1}$$
 Substitute $a_1 = 1500$, $r = 0.90$, $n = 6$ in the formula.

$$a_n \approx 886$$
 Simplify.

The cost of hosting the reunion in 2005 was \$886.

To find the total of hosting the reunions from 2000 to 2009, $\sum_{n=1}^{10} (1500)(0.90)^{n-1}$, find the sum of the geometric series.

$$S_n = \frac{a_1(1-r^n)}{1-r}$$
 Write the formula for the sum of a geometric series.

$$S_{10} = \frac{1500(1 - 0.90^{10})}{1 - 0.90}$$
 Substitute $a_1 = 1500, r = 0.90, n = 10$ in the formula.

$$S_{10} \approx 9770$$
 Simplify.

The cost of hosting the reunions from 2000 to 2009 was \$9770.

Exercise

- **14.** In 1990, a vacation package cost \$400. The cost has increased 10% per year.
 - **a.** What are the values of a_1 and r? $a_1 = 400$, r = 1.1
 - **b.** What is a rule for the cost of the vacation? $a_n = (400)(1.10)^{n-1}$
 - c. What was cost of the vacation in 1995? \$644.20
 - **d.** What was the total cost of the vacations from 1990 to 1999? \$6374.97
 - e. If the pattern continued until 2009, what was the total cost of the vacations? \$22,910