Function Algebra Key Concepts

Domain and Range of a Function Lesson

I nterval Notation

The open interval (a, b) is equivalent to the set $\{x \mid a<x<b\}$.
The closed interval $[a, b]$ is equivalent to the set $\{x \mid a \leq x \leq b\}$.
The half-open interval $(a, b]$ is equivalent to the set $\{x \mid a<x \leq b\}$.
The half-open interval $[a, b)$ is equivalent to the set $\{x \mid a \leq x<b\}$.
The non-ending interval $(-\infty, b)$ is equivalent to the set $\{x \mid x<b\}$.
The non-ending interval $[a, \infty)$ is equivalent to the set $\{x \mid x \geq a\}$.
The non-ending interval $(-\infty, \infty)$ represents all real numbers, which is also written as $\{x \mid x \in \mathbb{R}\}$.

Algebra of Functions Lesson

sum of functions	$(f+g)(x)=f(x)+g(x)$ for functions f and g
difference of functions	$(f-g)(x x)=f(x)-g(x)$ for functions f and g

product of functions	$(f \cdot g)(x)=f(x) \cdot g(x)$ for functions f and g
quotient of functions	$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$ for functions f and g where $g(x) \neq 0$

Composition of Functions Lesson

Composition of Functions

For two functions f and g , the composition of f and g is $f \circ g$, where $f \circ g(x)=$ $f(g(x))$.

I nverse Functions Lesson

One-to-One Function

A function, f , is one-to-one if $f\left(x_{1}\right)=f\left(x_{2}\right)$ implies $x_{1}=x_{2}$.

I nverse Functions

- A function, f , has an inverse function if it is one-to-one.
- For each ordered pair of points from the function f, interchanging the corresponding domain and range values results in another function, called the inverse of $f(x)$.
- The inverse of f is denoted by the notation f^{-1}.
- Note: The -1 in the inverse function notation is not an exponent. This means that f^{-1} does not represent the reciprocal function, $f^{-1}(x) \neq \frac{1}{f(x)}$.

Domain and Range of a Function and its Inverse

 For a function, f , and its inverse, f^{-1}, the domain of f is the range of f^{-1}, and the domain f^{-1} of is the range of f.
Steps for Finding the Inverse of a Function

1. Replace $f(x)$ with y.
2. Interchange x and y.
3. Solve for y.
4. Replace y with $f^{-1}(x)$.

Verifying Inverse Functions Lesson

Composing Inverse Functions

If f and g are inverse functions, then $f(g(x))=x$ for all x -values in the domain of g , and $g(f(x))=x$ for all x -values in the domain of f .

Steps to Prove that \mathbf{f} and \mathbf{g} are Inverse Functions

1. Show that $f(g(x))=x$.
2. Show that $g(f(x))=x$.

Graphs of I nverse Functions Lesson

Properties of Graphs of I nverse Functions

Graphs of a one-to-one function, f , and its inverse function, f^{-1}, have the following three properties:

- The graphical representations for f and f^{-1} are symmetrical about the line y $=\mathrm{x}$.
- All points of intersection for the graphs of f and f^{-1} are located along the line $y=x$.
- If the point (a, b) is on the graph of the function f, then the point (b, a) is on the graph of the function f^{-1}.

