Function Algebra Key Concepts

Domain and Range of a Function Lesson

Interval Notation

The open interval (a, b) is equivalent to the set $\{x \mid a < x < b\}$.

The closed interval [a, b] is equivalent to the set $\{x | a \le x \le b\}$.

The half-open interval (a, b] is equivalent to the set $\{x | a < x \le b\}$.

The half-open interval [a, b) is equivalent to the set $\{x | a \le x < b\}$.

The non-ending interval $(-\infty, b)$ is equivalent to the set $\{x | x < b\}$.

The non-ending interval $[a, \infty)$ is equivalent to the set $\{x | x \ge a\}$.

The non-ending interval $(-\infty, \infty)$ represents all real numbers, which is also written as $\{x | x \in \mathbb{R}\}$.

Algebra of Functions Lesson

sum of functions	(f+g)(x) = f(x) + g(x) for functions f and g
difference of functions	(f-g)(xx) = f(x) - g(x) for functions f and g

product of functions	$(f \cdot g)(x) = f(x) \cdot g(x)$ for functions f and g
quotient of functions	$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ for functions f and g where $g(x) \neq 0$

Composition of Functions Lesson

Composition of Functions

For two functions f and g, the composition of f and g is $f \circ g$, where $f \circ g(x) = f(g(x))$.

Inverse Functions Lesson

One-to-One Function

A function, *f* is one-to-one if $f(x_1) = f(x_2)$ implies $x_1 = x_2$.

Inverse Functions

- A function, *f*, has an inverse function if it is one-to-one.
- For each ordered pair of points from the function *f*, interchanging the corresponding domain and range values results in another function, called the inverse of *f*(*x*).
- The inverse of *f* is denoted by the notation f^{-1} .
- Note: The -1 in the inverse function notation is **not** an exponent. This means that f^{-1} does **not** represent the reciprocal function, $f^{-1}(x) \neq \frac{1}{f(x)}$.

Domain and Range of a Function and its Inverse

For a function, f, and its inverse, f^{-1} , the domain of f is the range of f^{-1} , and the domain f^{-1} of is the range of f.

Steps for Finding the Inverse of a Function

- 1. Replace f(x) with y.
- 2. Interchange x and y.
- 3. Solve for y.
- 4. Replace y with $f^{-1}(x)$.

Verifying Inverse Functions Lesson

Composing Inverse Functions

If *f* and *g* are inverse functions, then f(g(x)) = x for all *x*-values in the domain of *g*, and g(f(x)) = x for all *x*-values in the domain of *f*.

Steps to Prove that f and g are Inverse Functions

- 1. Show that f(g(x)) = x.
- 2. Show that g(f(x)) = x.

Graphs of Inverse Functions Lesson

Properties of Graphs of Inverse Functions

Graphs of a one-to-one function, f, and its inverse function, f^{-1} , have the following three properties:

- The graphical representations for f and f^{-1} are symmetrical about the line y = x.
- All points of intersection for the graphs of f and f^{-1} are located along the line y = x.
- If the point (a, b) is on the graph of the function f, then the point (b, a) is on the graph of the function f^{-1} .

