Graph Behavior Key Concepts

Analyzing Functions Lesson

I ncreasing, Decreasing, and Constant Intervals

- A function is increasing on an open interval in which $f\left(x_{1}\right)<f\left(x_{2}\right)$ when $x_{1}<x_{2}$ for all x_{1} and x_{2} in the interval.
- A function is decreasing on an open interval in which $f\left(x_{1}\right)>f\left(x_{2}\right)$ when $x_{1}<x_{2}$ for all x_{1} and x_{2} in the interval
- A function is constant on an open interval in which $f\left(x_{1}\right)=f\left(x_{2}\right)$ for all x_{1} and x_{2} in the interval.

Even and Odd Functions Lesson

Even and Odd Functions

- A function f is even if for each value of x in the domain, $f(-x)=f(x)$. The graph of an even function displays symmetry with respect to the y-axis; if the point (x, y) lies on the graph of f , then the point $(-x, y)$ also lies on the graph of f.
- A function f is odd if for each value of x in the domain, $f(-x)=-f(x)$. The graph of an odd function displays symmetry with respect to the origin; if the point (x, y) lies on the graph of f , then the point $(-x,-y)$ also lies on the graph of f .

Test for Even or Odd Functions

To test if a function f is even, odd, or neither, substitute $-x$ for x and simplify.

- If $f(-x)=f(x)$, then the function is even.
- If $f(-x)=-f(x)$, then the function is odd.
- Otherwise, the function is neither even nor odd.

Asymptotes and End Behavior Lesson

Vertical and Horizontal Asymptotes

The line $\mathrm{x}=\mathrm{a}$ is a vertical asymptote of the graph of $f(x)$ if $f(x) \rightarrow \infty$ or $f(x) \rightarrow-\infty$ as $x \rightarrow a$.

The line $\mathrm{y}=\mathrm{b}$ is a horizontal asymptote of the graph of $f(x)$ if $f(x) \rightarrow b$ as $x \rightarrow \infty$ or $x \rightarrow-\infty$.

Continuous and Discontinuous Functions Lesson

Continuous and Discontinuous Functions

A function is continuous if its graph is a single, unbroken curve.
A function is discontinuous if its graph has a hole, jump, or vertical asymptote.

Linear, Absolute Value, and Reciprocal Functions Lesson

Characteristics of the Parent Linear Function: $f(x)=x$

- domain: $(-\infty, \infty)$
- range: $(-\infty, \infty)$
- increasing intervals: $(-\infty, \infty)$
- decreasing intervals: none
- constant intervals: none
- x-intercept: $(0,0)$
- y-intercept: $(0,0)$
- even, odd, neither: odd
- continuous or discontinuous: continuous
- asymptotes: none
- end behavior: $f(x) \rightarrow \infty$ as $x \rightarrow \infty ; f(x) \rightarrow-\infty$ as $x \rightarrow-\infty$

Characteristics of the Constant Function: $f(x)=c$

- domain: $(-\infty, \infty)$
- range: c
- increasing intervals: none
- decreasing intervals: none
- constant intervals: $(-\infty, \infty)$
- x-intercept: none if $c \neq 0$; if $c=0$, the function's graph is the x -axis
- y-intercept: $(0, c)$
- even, odd, neither: even; if $c=0$ the function is also odd
- continuous or discontinuous: continuous
- asymptotes: none
- end behavior: $f(x) \rightarrow c$ as $x \rightarrow \infty ; f(x) \rightarrow c$ as $x \rightarrow-\infty$

Characteristics of the Parent Absolute Value Function: $f(x)=|x|$

- domain: $(-\infty, \infty)$
- range: $[0, \infty)$
- increasing intervals: $(0, \infty)$
- decreasing intervals: $(-\infty, 0)$
- constant intervals: none
- x-intercept: $(0,0)$
- y-intercept: $(0,0)$
- even, odd, neither: even
- continuous or discontinuous: continuous
- asymptotes: none
- end behavior: $f(x) \rightarrow \infty$ as $x \rightarrow \infty$; $f(x) \rightarrow \infty$ as $x \rightarrow-\infty$

Characteristics of the Parent Reciprocal Function:
$f(x)=\frac{1}{x}$

- domain: $(-\infty, 0) \cup(0, \infty)$
- range: $(-\infty, 0) \cup(0, \infty)$
- increasing intervals: none
- decreasing intervals: $(-\infty, 0) \cup(0, \infty)$
- constant intervals: none
- x-intercept: none
- y-intercept: none
- even, odd, neither: odd
- continuous or discontinuous: discontinuous
- asymptotes: $x=0$ and $y=0$
- end behavior: $f(x) \rightarrow 0$ as $x \rightarrow \infty ; f(x) \rightarrow 0$ as $x \rightarrow-\infty$

Power, Root, Exponential, Logarithmic Functions Lesson

Characteristics of Even-Degree Power Functions: $f(x)=x^{n}$, where \mathbf{n} is an even integer greater than zero

- domain: $(-\infty, \infty)$
- range: $[0, \infty)$
- increasing intervals: $(0, \infty)$
- decreasing Intervals: $(-\infty, 0)$
- constant intervals: none
- x-intercept: $(0,0)$
- y-intercept: $(0,0)$
- even, odd, neither: even
- continuous or discontinuous: continuous
- asymptotes: none
- end behavior: $f(x) \rightarrow \infty$ as $x \rightarrow \infty ; f(x) \rightarrow \infty$ as $x \rightarrow-\infty$

Characteristics of Odd-Degree Power Functions: $f(x)=x^{n}$, where \mathbf{n} is an odd integer greater than zero

- domain: $(-\infty, \infty)$
- range: $(-\infty, \infty)$
- increasing Intervals: $(-\infty, \infty)$
- decreasing intervals: none
- constant intervals: none
- x-intercept: $(0,0)$
- y-intercept: $(0,0)$
- even, odd, neither: odd
- continuous or discontinuous: continuous
- asymptotes: none
- end behavior: $f(x) \rightarrow \infty$ as $x \rightarrow \infty ; f(x) \rightarrow-\infty$ as $x \rightarrow-\infty$

Characteristics of Even-I ndex Root Functions, $f(x)=\sqrt[n]{x}$, where \mathbf{n} is an even integer greater than zero

- domain: $[0, \infty)$
- range: $[0, \infty)$
- increasing intervals: $(0, \infty)$
- decreasing intervals: none
- constant intervals: none
- x-intercept: $(0,0)$
- y-intercept: $(0,0)$
- even, odd, neither: neither
- continuous or discontinuous: continuous
- asymptotes: none
- end behavior: $f(x) \rightarrow \infty$ as $x \rightarrow \infty$

Characteristics of Odd-I ndex Root Functions: $f(x)=\sqrt[n]{x}$, where \mathbf{n} is an odd integer greater than zero

- domain: $(-\infty, \infty)$
- range: $(-\infty, \infty)$
- increasing intervals: $(-\infty, \infty)$
- decreasing intervals: none
- constant intervals: none
- x-intercept: $(0,0)$
- y -intercept: $(0,0)$
- even, odd, neither: odd
- continuous or discontinuous: continuous
- asymptotes: none
- end behavior: $f(x) \rightarrow \infty$ as $x \rightarrow \infty ; f(x) \rightarrow-\infty$ as $x \rightarrow-\infty$

Characteristics of Exponential Functions:

$f(x)=b^{x}, \quad b>1$

- domain: $(-\infty, \infty)$
- range: $(0, \infty)$
- increasing intervals: $(-\infty, \infty)$
- decreasing intervals: none
- constant intervals: none
- x-intercept: none
- y-intercept: $(0,1)$
- even, odd, neither: neither
- continuous or discontinuous: continuous
- asymptotes: $\mathrm{y}=0$
- end behavior: $f(x) \rightarrow \infty$ as $x \rightarrow \infty ; f(x) \rightarrow 0$ as $x \rightarrow-\infty$

Characteristics of Exponential Functions:

$f(x)=b^{x}, 0<b<1$

- domain: $(-\infty, \infty)$
- range: $(0, \infty)$
- increasing intervals: none
- decreasing intervals: $(-\infty, \infty)$
- constant intervals: none
- x-intercept: none
- y-intercept: $(0,1)$
- even, odd, neither: neither
- continuous or discontinuous: continuous
- asymptotes: y = 0
- end behavior: $f(x) \rightarrow 0$ as $x \rightarrow \infty ; f(x) \rightarrow \infty$ as $x \rightarrow-\infty$

Characteristics of the Parent Logarithmic Function:

$f(x)=\log _{b} x, \quad b>1$

- domain: $(0, \infty)$
- range: $(-\infty, \infty)$
- increasing intervals: $(0, \infty)$
- decreasing intervals: none
- constant intervals: none
- x-intercept: $(1,0)$
- y-intercept: none
- even, odd, neither: neither
- continuous or discontinuous: continuous
- asymptotes: $\mathrm{x}=0$
- end behavior: $f(x) \rightarrow \infty$ as $x \rightarrow \infty ; f(x) \rightarrow-\infty$ as $x \rightarrow 0$

Characteristics of the Parent Logarithmic Function:

 $f(x)=\log _{b} x, 0<b<1$- domain: $(0, \infty)$
- range: $(-\infty, \infty)$
- increasing intervals: none
- decreasing intervals: $(0, \infty)$
- constant intervals: none
- x-intercept: $(1,0)$
- y-intercept: none
- even, odd, neither: neither
- continuous or discontinuous: continuous
- asymptotes: $\mathrm{x}=0$
- end behavior: $f(x) \rightarrow-\infty$ as $x \rightarrow \infty ; f(x) \rightarrow \infty$ as $x \rightarrow 0$

Transformations of Functions Lesson

Vertical and Horizontal Shifts

The graph of $y=f(x)+a$ is a vertical shift of the graph of $f(x)$.

- If a is positive, the graph shifts up a units.
- If a is negative, the graph shifts down a units.

The graph of $y=f(x+a)$ is a horizontal shift of the graph of $f(x)$.

- If a is positive, the graph shifts left a units.
- If a is negative, the graph shifts right a units.

Vertical and Horizontal Stretches and Compressions

The graph of $y=a f(x)$ is a vertical stretch or compression of the graph of $f(x)$.

- If $|a|>1$, the graph is stretched away from the x-axis.
- If $0<|a|<1$, the graph is compressed toward the x-axis.

The graph of $y=f(a x)$ is a horizontal stretch or compression of the graph of $f(x)$.

- If $|a|>1$, the graph is compressed towards the y-axis.
- If $0<|a|<1$, the graph is stretched away from the y-axis.

Reflection Across the \mathbf{x}-Axis and \mathbf{y}-Axis

The graph of $y=-f(x)$ is a reflection across the x-axis of the graph of $f(x)$.
The graph of $y=f(-x)$ is a reflection across the y-axis of the graph of $f(x)$.

Absolute Value of a Function

The graph of $y=|f(x)|$ is given by $y=\left\{\begin{array}{cc}f(x) & \text { if } f(x) \geq 0 \\ -f(x) & \text { if } f(x)<0\end{array}\right.$.
For any values of x for which $f(x) \geq 0$, the graph of $y=|f(x)|$ is the same as the graph of $f(x)$. For values of x for which $f(x)<0$, the graph of $y=|f(x)|$ is a reflection of the graph of $f(x)$ across the x -axis.

Multiple Transformations of Functions Lesson Order of Transformations of Functions

When carrying out multiple transformations of a function, perform them in the following order:

1. horizontal shift
2. stretch or compression
3. reflection
4. vertical shift
