Exponential, Logarithmic, and Piecewise Functions Key Words

Exponential Functions and Graphs Lesson

exponential decay - when an amount loses value exponentially over time exponential function - a function of the form $f(x)=b^{x}$, where x is a real number, $b>0$, and $b \neq 1$
exponential growth - when an amount gains value exponentially over time natural exponential function - the exponential function with base $e, f(x)=e^{x}$

Logarithmic Notation Lesson

common logarithm - a logarithm with base 10 , written $y=\log x$
logarithmic function - the inverse of the exponential function $y=b^{x}$, where $b>0$ and $b \neq 1$; written $y=\log _{b} x$
natural logarithm - the inverse of the natural exponential function $y=e^{x}$; written $y=\log _{e} x$ or $y=\ln x$

Logarithm Rules and Solving Logarithmic Equations Lesson

power rule - a rule stating that the logarithm of an argument raised to a power is equal to the product of the power and the logarithm of the argument product rule - a rule stating that the logarithm of a product is equal to the sum of the logarithms of each factor in the argument
quotient rule - a rule stating the logarithm of a quotient is equal to the difference of the logarithms of the numerator and the denominator in the argument

Solving Exponential Equations Lesson

change of base formula - a formula that is used to rewrite a logarithm in terms of logarithms with a different base; most typically used to rewrite a logarithm in terms of common or natural logarithms

Piecewise Functions Lesson

piecewise function - a function defined by different equations on different intervals of the domain
step function - a function that continually increases or continually decreases from one constant value to another

