Conic Sections Key Concepts

Analytic Geometry Lesson

Distance Formula

The distance, d , between two points on a coordinate plane with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by the formula $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.

Midpoint of a Line Segment

The midpoint of $\overline{P_{1} P_{2}}$, where the coordinates of P_{1} are $\left(x_{1}, y_{1}\right)$ and the coordinates of P_{2} are $\left(x_{2}, y_{2}\right)$, has coordinates $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.

Introduction to Conic Sections Lesson

Circle

A circle is a conic section formed by slicing a right circular cone with a plane that is perpendicular to its axis.

Ellipse

An ellipse is a conic section formed by slicing a right circular cone with a plane that is not parallel to its edge nor perpendicular or parallel to its axis.

Parabola

A parabola is a conic section formed by slicing a right circular cone with a plane that is parallel to its edge.

Hyperbola
A hyperbola is a conic section formed by slicing a double cone with a plane that is parallel to the axis of the cones and does not pass through the apexes.

General Equation of a Conic Section

The equation of every conic can be written in the following form:
$A x^{2}+B x y+C y^{2}+D x+E y+F=0$, where A, B, C, D, E, and F are real numbers.

Identifying a Conic Section from Its General Equation

The discriminant of the equation is $B^{2}-4 A C$.

- If $B^{2}-4 A C>0$, the conic is a hyperbola.
- If $B^{2}-4 A C=0$, the conic is a parabola.
- If $B^{2}-4 A C<0$ and $A=C$, the conic is a circle.
- If $B^{2}-4 A C<0$ and $A \neq C$, the conic is an ellipse.

Circles Lesson

Standard Form of a Circle

The standard form of the equation of a circle is $(x-h)^{2}+(y-k)^{2}=r^{2}$, where the center is (h, k), any point on the circle is (x, y), and the radius is r.

General Form of a Circle

The general form of the equation of a circle is $A x^{2}+C y^{2}+D x+E y+F=0$, where A , $\mathrm{C}, \mathrm{D}, \mathrm{E}$, and F are real numbers, $\mathrm{A}=\mathrm{C}, ~ A \neq 0$ and $C \neq 0$.

Ellipses Lesson

Standard Form of an Ellipse

- The standard form of the equation of a horizontal ellipse is $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$, with center (h, k), a major axis parallel to the x-axis, vertices $(h \pm a, k)$, and foci ($h \pm c, k$).
- The standard form of the equation of a vertical ellipse is $\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1$ with center (h, k), a major axis parallel to the y-axis, vertices $(h, k \pm a)$, and foci ($h, k \pm c$).
- For both equations, the length of the major axis is $2 a$ and the length of the minor axis is 2 b , where $a>b>0$.
- For both equations, $c^{2}=a^{2}-b^{2}$. For both equations, the vertices lie on the major axis, a units from the center, and the foci lie on the major axis, c units from the center.

General Form of an Ellipse

The general form of the equation of an ellipse is $A x^{2}+C y^{2}+D x+E y+F=0$, with $A>0, C>0, A \neq C$, and real numbers D, E, and F .

Parabolas Lesson

Standard Form of a Parabola

- The standard form of the equation of a parabola with a horizontal directrix and a vertical axis of symmetry is $(x-h)^{2}=4 p(y-k) ; p \neq 0$ with vertex (h, k), directrix $y=k-p$, and focus $(h, k+p)$.
- The standard form of the equation of a parabola with a vertical directrix and a horizontal axis of symmetry is $(y-k)^{2}=4 p(x-h) ; p \neq 0$ with vertex (h, k), directrix $x=h-p$, and focus $(h+p, k)$.

General Form of a Parabola

- The general form of the equation of a parabola with a horizontal directrix is $A x^{2}+D x+E y+F=0$, where A, D, E, and F are real numbers.
- The general form of the equation of a parabola with a vertical directrix is $C y^{2}+D x+E y+F=0$, where C, D, E, and F are real numbers.

Hyperbolas Lesson

Standard Form of a Hyperbola

- The standard form of the equation of a hyperbola with a horizontal transverse axis is $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$, with center (h, k). The vertices
$(h \pm a, k)$ and foci $(h \pm c, k)$ lie on the axis of symmetry. The equations of the asymptotes are $y=\frac{b}{a}(x-h)+k$, and $y=-\frac{b}{a}(x-h)+k$.
- The standard form of the equation of a hyperbola with a vertical transverse axis is $\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$, with center (h, k). The vertices $(h, k \pm a)$ and foci $(h, k \pm c)$ lie on the axis of symmetry. The equations of the asymptotes are $y=\frac{a}{b}(x-h)+k$, and $y=-\frac{a}{b}(x-h)+k$.
- The transverse axis has endpoints at the vertices, which lie a units from the center, and the conjugate axis has endpoints b units from the center. The foci lie on the axis of symmetry, c units from the center.
- For both equations, $c^{2}=a^{2}+b^{2}$.

General Form of a Hyperbola

- The general form of the equation of a hyperbola with a horizontal transverse axis is $A x^{2}-C y^{2}+D x+E y+F=0$, with $A>0, C>0, A \neq C$, and real numbers A, C, D, E and F.
- The general form of the equation of a hyperbola with a vertical transverse axis is $-A x^{2}+C y^{2}+D x+E y+F=0$, with $A>0, C>0, A \neq C$, and real numbers A, C, D, E and F.

