Sequences and Series Key Concepts

Sequences Lesson

Sequences

A sequence, denoted $\{a_n\}$, can be defined using an explicit formula or a recursive formula. An explicit formula provides an equation for the *n*th term of the sequence, denoted a_n . A recursive formula provides a term, or terms, of the sequence, usually a_1 , and an equation to find each successive term.

Arithmetic Sequences Lesson

Recursive Formula for an Arithmetic Sequence

An arithmetic sequence can be defined recursively by the formula $a_n = a_{n-1} + d$, where *d* is the common difference, *n* is the set of positive integers, and a_1 is the first term of the sequence.

Explicit Formula for an Arithmetic Sequence

An arithmetic sequence can be defined explicitly by the formula $a_n = a_1 + (n-1)d$, where *d* is the common difference, *n* is the set of positive integers, and a_1 is the first term of the sequence.

Terms of an Arithmetic Sequence Lesson

Arithmetic Mean Formula

 $\overline{x} = \frac{x_1 + x_2 + \ldots + x_n}{n}$

Finite Arithmetic Series Lesson

Sum of the First *n* Terms of an Arithmetic Sequence

The sum of the first *n* terms of an arithmetic sequence is written S_n , where the following applies:

- S_n is called the *n*th partial sum.
- $S_n = a_1 + a_2 + a_3 + \ldots + a_n$

Finite Arithmetic Sum Formula

The formula for the sum of the first *n* terms of an arithmetic sequence is

 $S_n = \frac{n}{2}(a_1 + a_n)$, where the following applies:

- *n* is the number of terms to be added.
- a_1 is the first term in the sequence.
- a_n is the *n*th term in the sequence.

Arithmetic Series Summation Formulas Lesson

Sigma Notation

If *N* represents the number of terms added by the sum $\sum_{i=x}^{n} a_i$, then N = n - x + 1.

Properties of Summation

1. If *c* is a real number,
$$\sum_{i=1}^{n} c = nc$$
.

- 2. If c is a real number, $\sum_{i=1}^{n} cx_i = c \sum_{i=1}^{n} x_i$.
- 3. $\sum_{i=1}^{n} (x_i + y_i) = \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i$

4.
$$\sum_{i=1}^{n} (x_i - y_i) = \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} y_i$$

Summation Formulas

1.
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

2.
$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

3.
$$\sum_{i=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

Equations of a Geometric Sequence Lesson

Recursive Formula for a Geometric Sequence

A geometric sequence can be defined recursively by the formula $a_n = a_{n-1} \cdot r$, where *r* is the common ratio, *n* is the set of positive integers, and a_1 is the first term of the sequence.

Explicit Formula for a Geometric Sequence

A geometric sequence can be defined explicitly by the formula $a_n = a_1 r^{n-1}$ where *r* is the common ratio, *n* is the set of positive integers, and a_1 is the first term of the sequence.

Terms of a Geometric Sequence Lesson

Geometric Mean Formula

 $GM = \sqrt[n]{x_1 \cdot x_2 \cdot \ldots \cdot x_n}$

Convergent and Divergent Sequences and Series Lesson

Convergence Test for Geometric Series

The geometric series $a_n = a_1 r^{n-1}$ converges if |r| < 1 and diverges if $|r| \ge 1$.

Finite Geometric Series Lesson

Sum of the First *n* Terms of a Geometric Sequence

The sum of the first *n* terms of a geometric sequence is written S_n , where the following applies:

- S_n is called the *n*th partial sum.
- $S_n = a_1 + a_2 + a_3 + \ldots + a_n$

Finite Geometric Sum Formula

The formula for the sum of the first *n* terms of a geometric sequence $\{a_n\}$ is

 $S_n = \frac{a_1(1-r^n)}{1-r}, r \neq 1$, where the following applies:

- *n* is the number of terms to be added.
- a_1 is the first term in the sequence.
- *r* is the common ratio.

Infinite Geometric Series Lesson

Sum of an Infinite Geometric Series

The sum of an infinite geometric series is given by S_{∞} , where $S_{\infty} = a_1 + a_2 + a_3 + \dots$,

which can also be expressed as $S_{\infty} = \sum_{i=1}^{\infty} (a_1 \cdot r^{i-1}).$

Infinite Geometric Sum Formula

The formula for the sum of an infinite geometric series is $S_{\infty} = \frac{a_1}{1-r}$, where the

following applies:

- a_1 is the first term.
- *r* is the common ratio.
- |r| < 1

