## Sequences and Series Key Concepts

## Sequences Lesson

## Sequences

A sequence, denoted $\left\{a_{n}\right\}$, can be defined using an explicit formula or a recursive formula. An explicit formula provides an equation for the nth term of the sequence, denoted $a_{n}$. A recursive formula provides a term, or terms, of the sequence, usually $a_{1}$, and an equation to find each successive term.

## Arithmetic Sequences Lesson

## Recursive Formula for an Arithmetic Sequence

An arithmetic sequence can be defined recursively by the formula $a_{n}=a_{n-1}+d$, where d is the common difference, n is the set of positive integers, and $a_{1}$ is the first term of the sequence.

## Explicit Formula for an Arithmetic Sequence

An arithmetic sequence can be defined explicitly by the formula $a_{n}=a_{1}+(n-1) d$, where d is the common difference, n is the set of positive integers, and $a_{1}$ is the first term of the sequence.

## Terms of an Arithmetic Sequence Lesson Arithmetic Mean Formula

$\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}$

## Finite Arithmetic Series Lesson

## Sum of the First $\mathbf{n}$ Terms of an Arithmetic Sequence

The sum of the first $n$ terms of an arithmetic sequence is written $S_{n}$, where the following applies:

- $\quad S_{n}$ is called the nth partial sum.
- $S_{n}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}$


## Finite Arithmetic Sum Formula

The formula for the sum of the first n terms of an arithmetic sequence is $S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$, where the following applies:

- n is the number of terms to be added.
- $\quad a_{1}$ is the first term in the sequence.
- $a_{n}$ is the nth term in the sequence.


## Arithmetic Series Summation Formulas Lesson

## Sigma Notation



If N represents the number of terms added by the sum $\sum_{i=x}^{n} a_{i}$, then $N=n-x+1$.

## Properties of Summation

1. If c is a real number, $\sum_{i=1}^{n} c=n c$.
2. If c is a real number, $\sum_{i=1}^{n} c x_{i}=c \sum_{i=1}^{n} x_{i}$.
3. $\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)=\sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n} y_{i}$
4. $\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)=\sum_{i=1}^{n} x_{i}-\sum_{i=1}^{n} y_{i}$

## Summation Formulas

1. $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
2. $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
3. $\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$

## Equations of a Geometric Sequence Lesson

## Recursive Formula for a Geometric Sequence

A geometric sequence can be defined recursively by the formula $a_{n}=a_{n-1} \cdot r$, where $r$ is the common ratio, n is the set of positive integers, and $a_{1}$ is the first term of the sequence.

## Explicit Formula for a Geometric Sequence

A geometric sequence can be defined explicitly by the formula $a_{n}=a_{1} r^{n-1}$ where $r$ is the common ratio, n is the set of positive integers, and $a_{1}$ is the first term of the sequence.

## Terms of a Geometric Sequence Lesson <br> Geometric Mean Formula

$$
G M=\sqrt[n]{x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}}
$$

## Convergent and Divergent Sequences and Series Lesson

## Convergence Test for Geometric Series

The geometric series $a_{n}=a_{1} r^{n-1}$ converges if $|r|<1$ and diverges if $|r| \geq 1$.
Finite Geometric Series Lesson
Sum of the First $\mathbf{n}$ Terms of a Geometric Sequence

The sum of the first n terms of a geometric sequence is written $S_{n}$, where the following applies:

- $\quad S_{n}$ is called the nth partial sum.
- $S_{n}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}$


## Finite Geometric Sum Formula

The formula for the sum of the first $n$ terms of a geometric sequence $\left\{a_{n}\right\}$ is $S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}, r \neq 1$, where the following applies:

- n is the number of terms to be added.
- $a_{1}$ is the first term in the sequence.
- $r$ is the common ratio.


## I nfinite Geometric Series Lesson <br> Sum of an Infinite Geometric Series

The sum of an infinite geometric series is given by $S_{\infty}$, where $S_{\infty}=a_{1}+a_{2}+a_{3}+\ldots$, which can also be expressed as $S_{\infty}=\sum_{i=1}^{\infty}\left(a_{1} \cdot r^{i-1}\right)$.

## I nfinite Geometric Sum Formula

The formula for the sum of an infinite geometric series is $S_{\infty}=\frac{a_{1}}{1-r}$, where the following applies:

- $a_{1}$ is the first term.
- $r$ is the common ratio.
- $|r|<1$

