

REVIEW				
The six trigonometric functions can be paired up as cofunctions or as reciprocal functions.				
SORT THEM AS RECIPROCAL PAIRS				
SIN = 1/CSC	CSC = 1/SIN			
$\cos = 1/\sec$	SEC = 1/COS			
TAN = 1/COT	COT = 1/TAN			

REVIEW		
DEFINE THESE		
DOMAIN vs RANGE		

	DOMAIN & RANGE				
Function	Domain	Range			
$y = \sin x$	(-∞,∞)	[-1,1]			
$y = \cos x$	(-∞,∞)	[-1,1]			
$y = \tan x$	$(-\infty,\infty)$, except $\frac{\pi}{2} + n\pi$, where <i>n</i> is an integer	(-∞,∞)			
$y = \cot x$	$(-\infty,\infty)$, except $n\pi$, where n is an integer	(-00,00)			
$y = \csc x$	$(-\infty,\infty)$, except $n\pi$, where <i>n</i> is an integer	(−∞,−1]∪[1,∞)			
$y = \sec x$	$(-\infty,\infty)$, except $\frac{\pi}{2} + n\pi$, where <i>n</i> is an integer	(−∞,−1]∪[1,∞)			

SOH- on the	SOH-CAH-TOA on the Unit Circle	
That means becomes	sin = opp/hyp sin = y	
And then becomes	cos = adj/hyp cos = x	
And so becomes	tan = opp/adj tan = y/x	

