UNIT 2 LESSONS I-3

PRECALCULUS B

LESSONS: - Graphs of Trig Functions - Domain and Range - Behavior of Trig Functions - Even or Odd ... this week - Period and Amplitude ... next week

Graphing from a Table:

- Plug in numbers
- Calculate the output
- Plot the points
- Connect the dots

Quadrant	θ	$y=\sin \theta$
n/a	0	0
I	$\frac{\pi}{6}$	0.5
I	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2} \approx 0.707$
I	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2} \approx 0.866$
n/a	$\frac{\pi}{2}$	1
II	$\frac{2 \pi}{3}$	$\frac{\sqrt{3}}{2} \approx 0.866$
II	$\frac{3 \pi}{4}$	$\frac{\sqrt{2}}{2} \approx 0.707$

Sine $\sim \sin \theta$

- The y value increases from 0 to I, then decreases from I to -I, then increases from -I to 0 .
- This completes one cycle, that then repeats infinitely.
- The length of one sine cycle is 2π.

"Oscillate"

- When a function alternates between high and low.
- We say this one oscillates about the line $y=0$ with a maximum of $y=I$ and a minimum of $y=-I$.

Tangent $\sim \tan \theta$

- The y value increases between the asymptote lines.
- The asymptote lines are IT apart, and define the cycle.
- This is not an oscillation; there is no max or min.

Tangent $\sim \tan \theta$

- Tan $=\sin / \cos$
- So, since we can't divide by 0 , any place cosine equals 0 makes tangent undefined!!

Cotangent $\sim \cot \theta$

- The y value decreases between the asymptote lines.
- The asymptote lines are IT apart, and define the cycle.
- This is not an oscillation; there is no max or min.

Secant $\sim \sec \theta$

- The y value increases from I to ∞ and $-\infty$ to $-I$, then decreases from $-I$ to $-\infty$ and $+\infty$ to I.
- The asymptote lines are $I \Pi$ apart, but the cycle takes 2π.
- This is not an oscillation; there is no max or min.

Cosecant ~ csc θ

- The y value decreases from $+\infty$ to I, then increases from I to $+\infty$ and from $-\infty$ to -1 , then decreases from -1 to $-\infty$.
- The asymptote lines are $I \Pi$ apart, but the cycle takes 2π.
- This is not an oscillation; there is no max or min.

REVIEW

The six trigonometric functions can be paired up as cofunctions or as reciprocal functions.

SORT THEM AS RECIPROCAL PAIRS ...

REVIEW

The six trigonometric functions can be paired up as cofunctions or as reciprocal functions.

SORT THEM AS RECIPROCAL PAIRS ...
$\operatorname{SIN}=1 / \mathrm{CSC}$
$\mathrm{CSC}=1 / \mathrm{SIN}$
$\operatorname{COS}=1 / \mathrm{SEC}$
$\mathrm{SEC}=1 / \mathrm{COS}$
$\mathrm{TAN}=1 / \mathrm{COT}$
COT $=1 / \mathrm{TAN}$

$\operatorname{COS}=1 / \mathrm{SEC} \quad \mathrm{SEC}=1 / \mathrm{COS}$

See how the lengths of the cycles match, but the increasing and decreases reverses!

See how the lengths of the cycles match, but the increasing and decreases reverses!

Sine $\sim \sin \theta$

What is the domain? What is the range?

Sine $\sim \sin \theta$
What is the domain? What is the ran

Notation	Domain	Range
inequality	$-\infty<x<\infty$	$-1 \leq y \leq 1$
interval	$(-\infty, \infty)$	$[-1,1]$

Tangent $\sim \tan \theta$

What is the domain? What is the range?

Tangent $\sim \tan \theta$

What is the domain? What is the range?

Notation	Domain	Range
inequality	$-\infty<x<\infty, x \neq \frac{\pi}{2}+n \pi$, where n is an integer	$-\infty<y<\infty$
interval	$(-\infty, \infty)$, except $\frac{\pi}{2}+n \pi$, where n is an integer	$(-\infty, \infty)$

Cosecant $\sim \csc \theta$

What is the domain? What is the range?

Cosecant ~ csc θ

What is the domain? What is the range?

Notation	Domain	Range
inequality	$-\infty<x<\infty, x \neq n \pi$, where n is an integer	$-\infty<y \leq-1$ or $1 \leq y<\infty$
interval	$(-\infty, \infty)$, except $n \pi$, where n is an integer	$(-\infty,-1] \cup[1, \infty)$

DOMAIN \& RANGE

Function	Domain	Range
$y=\sin x$	$(-\infty, \infty)$	$[-1,1]$
$y=\cos x$	$(-\infty, \infty)$	$[-1,1]$
$y=\tan x$	$(-\infty, \infty)$, except $\frac{\pi}{2}+n \pi$, where n is an integer	$(-\infty, \infty)$
$y=\cot x$	$(-\infty, \infty)$, except $n \pi$, where n is an integer	$(-\infty, \infty)$
$y=\csc x$	$(-\infty, \infty)$, except $n \pi$, where n is an integer	$(-\infty,-1] \cup[1, \infty)$
$y=\sec x$	$(-\infty, \infty)$, except $\frac{\pi}{2}+n \pi$, where n is an	$(-\infty,-1] \cup[1, \infty)$

EVEN or ODD??

Do you remember the difference??
It has to do with symmetry ...

EVEN or ODD??

An EVEN symmetry function has
"fold" symmetry across the y-axis.

An ODD symmetry function has
"rotation" symmetry around the origin.

EVEN or ODD??

EVEN or ODD??

An EVEN symmetry function has
"fold" symmetry across the y-axis.

An ODD symmetry function has
"rotation" symmetry around the origin.

EVEN:

Cosine \& Secant
ODD:
Sine \& Cosecant
Tangent \& Cotangent

Back to the UNIT CIRCLE:

And that the "adjacent" side is always the x -coordinate?!

Check these: $\sin \pi / 6=I / 2$, and $\cos \pi / 6=\sqrt{ } 3 / 2$
$(x, y)=$
(cos, \sin)
For the
Unit
Circle!

SOH-CAH-TOA on the Unit Circle

That means $\quad \sin =$ opp/hyp becomes $\quad \sin =\mathbf{y}$

And then	$\cos =$ adj/hyp
becomes	$\boldsymbol{c o s}=\mathbf{x}$

And so	$\tan =$ opp/adj
becomes	$\boldsymbol{\operatorname { t a n } = \boldsymbol { y } / \mathbf { x }}$

So, look at sine at the axes ...

At 0 radians, $\sin =0$
At $\pi / 2$ radians, $\sin =1$
At Π radians, $\sin =0$
At $3 \pi / 2$ radians, $\sin =-1$

Just as we saw on its graph!

Questions??

Review the Key Terms and Key Concepts documents for this unit.

Look up the topic at khanacademy.org and virtualnerd.com

Check our class website at nca-patterson.weebly.com
*Reserve a time for a call with me at jpattersonmath.youcanbook.me

We can use the LiveLesson whiteboard to go over problems together!

