

DOUBLE-ANGLE FORMULAS

Double-Angle Formulas

```
\operatorname{sin}20=2\operatorname{sin}0\operatorname{cos}0
cos}20=\mp@subsup{\operatorname{cos}}{}{2}0-\mp@subsup{\operatorname{sin}}{}{2}
cos}20=2\mp@subsup{\operatorname{cos}}{}{2}0-
cos}20=1-2\mp@subsup{\operatorname{sin}}{}{2}
tan 20=\frac{2\operatorname{tan}0}{1-\mp@subsup{\operatorname{tan}}{}{2}0}
```

Since cosine as three versions, use whichever version is most helpful to the problem you are working on!

POWER-REDUCING FORMULAS

Power-Reducing Formulas

$$
\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}
$$

$$
\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}
$$

$$
\tan ^{2} \theta=\frac{1-\cos 2 \theta}{1+\cos 2 \theta}
$$

These formulas give you a substitution without squares for a squared function!

That could come in handy.

Example:

The work done by a force is given by the equation $\mathrm{W}=F d \cos \theta$, where F is the magnitude of the force, d is the distance traveled by the object, and θ is the angle between the direction of the force and the direction of movement. How much work is done by a man dragging a box with 25 N of force at a 22.5° angle for 2 m ? Find the exact value.
$\mathrm{W}=\mathrm{Fd} \cos \theta$
$\mathrm{W}=(25)(2) \cos (22.5)$

How do we get 22.5°
from the unit circle?

Example:
The work done by a force is given by the equation $\mathrm{W}=F d \cos \theta$, where F is the magnitude of the force, d is the distance traveled by the object, and θ is the angle between the direction of the force and the direction of movement. How much work is done by a man dragging a box with 25 N of force at a 22.5° angle for 2 m ? Find the exact value.

W = Fd $\cos \theta$
$W=(25)(2) \cos (22.5)$

An angle of 22.5° is
half of 45° !

So, we need the cosine half angle formula.

Example:

A tree casts a shadow 40 ft . long when the sun is 15° above the horizon. How tall is the tree? Find the exact value.

So the tree is opposite the angle, and the shadow is adjacent to the angle ...
$\tan \theta=o p p / a d j$
$\tan 15^{\circ}=\mathrm{h} / 40$
$40 \tan 15^{\circ}=h$

You will also use these formulas in the substitution steps of verifying identities.

Double-Angle Formulas

$\sin 2 \theta=2 \sin \theta \cos \theta$
$\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$
$\cos 2 \theta=2 \cos ^{2} \theta-1$
$\cos 2 \theta=1-2 \sin ^{2} \theta$
$\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
$\sqrt{ }$

Power-Reducing Formulas

$$
\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}
$$

$$
\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}
$$

$$
\tan ^{2} \theta=\frac{1-\cos 2 \theta}{1+\cos 2 \theta}
$$

Half-Angle Formulas
$\sin \frac{\theta}{2}=\sqrt{\frac{1-\cos \theta}{2}}$ for $\frac{\theta}{2}$ in Quadrant I or II
$\sin \frac{\theta}{2}=-\sqrt{\frac{1-\cos \theta}{2}}$ for $\frac{\theta}{2}$ in Quadrant III or IV
$\cos \frac{\theta}{2}=\sqrt{\frac{1+\cos \theta}{2}}$ for $\frac{\theta}{2}$ in Quadrant I or IV
$\cos \frac{\theta}{2}=-\sqrt{\frac{1+\cos \theta}{2}}$ for $\frac{\theta}{2}$ in Quadrant II or III
$\tan \frac{\theta}{2}=\frac{\sin \theta}{1+\cos \theta}$
$\tan \frac{\theta}{2}=\frac{1-\cos \theta}{\sin \theta}$

Example:

Verify that $\cos ^{2} \frac{\theta}{2}=\frac{\tan \theta+\sin \theta}{2 \tan \theta}$.
*Remember, to verify an identity, substitute and simplify to the left side until it matches the right side.

Possible starting strategies:

- The left is degree 2 and the right is degree 1 , so maybe use a power reducing formula.
- The left has a half angle, so probably use a half angle formula.

Example:

Verify that $\cos ^{2} \frac{\theta}{2}=\frac{\tan \theta+\sin \theta}{2 \tan \theta}$.
$\cos ^{2} \frac{\theta}{2}=\left(\pm \sqrt{\frac{1+\cos \theta}{2}}\right)^{2} \quad$ Apply the half-angle formula for cosine.
$\cos ^{2} \frac{\theta}{2}=\frac{1+\cos \theta}{2} \quad$ Simplify.
$\cos ^{2} \frac{\theta}{2}=\frac{1+\cos \theta}{2}\left(\frac{\tan \theta}{\tan \theta}\right) \quad$ Multiply by a factor of 1 .
$\cos ^{2} \frac{\theta}{2}=\frac{\tan \theta+\tan \theta \cos \theta}{2 \tan \theta}$ Distribute.
$\cos ^{2} \frac{\theta}{2}=\frac{\tan \theta+\frac{\sin \theta}{\cos \theta} \cos \theta}{2 \tan \theta}$ Apply the reciprocal identity.
$\cos ^{2} \frac{\theta}{2}=\frac{\tan \theta+\sin \theta}{2 \tan \theta} \quad$ Simplify.

Train Your Brain:

Working through the steps in the lesson examples and figuring out what is done in each step will help train your brain to see possibilities for putting together the puzzles of new problems!

YES, you may need to try more than one strategy to find a way to make it work!!

It is like doing a puzzle or a maze . . .
Be patient with the process and take your time!

