UNIT 3 LESSON 5 Law of Cosines

PRECALCULUS B

Law of Cosines:

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

NOTE: This involves all three sides and one angle. So if you know three of these four numbers, you can solve for the missing one!

$5^{\text {th }}$ Case: Given 1 Angle \& 2 Sides - SAS

Start by labeling the triangle, and setting up the corresponding Law of Cosines:

Let $a=80, b=120$, and $C=133^{\circ}$.

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C
$$

$5^{\text {th }}$ Case: Given 1 Angle \& 2 Sides - SAS

Use the Law of Cosines to solve for the third side.

TRY IT: Plug in, and calculate the length of side c.

Let $a=80, b=120$, and $C=133^{\circ}$.
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

$5^{\text {th }}$ Case: Given 1 Angle \& 2 Sides - SAS

Use the Law of Cosines to solve for the third side.

TRY IT: Plug in, and calculate the length of side c.

Let $a=80, b=120$, and $C=133^{\circ}$.
$c^{2}=a^{2}+b^{2}-2 a b \cos C$
$c^{2}=(80)^{2}+(120)^{2}-2(80)(120) \cos 133^{\circ}$

$5^{\text {th }}$ Case: Given 1 Angle \& 2 Sides - SAS

Use the Law of Cosines to solve for the third side.

TRY IT: Plug in, and calculate the length of side c.

Let $a=80, b=120$, and $C=133^{\circ}$.
$c^{2}=a^{2}+b^{2}-2 a b \cos C$
$c^{2}=(80)^{2}+(120)^{2}-2(80)(120) \cos 133^{\circ}$
$c^{2}=6,400+14,400-(-13,094.37)$
$c^{2}=33,894.37$
$c \approx 184$

$5^{\text {th }}$ Case: Given 1 Angle \& 2 Sides - SAS

Now you have angle C and side c to start the Law of Sines
to solve for a second angle!

Try It! $\quad \frac{\sin B}{b}=\frac{\sin C}{c}$

$5^{\text {th }}$ Case: Given 1 Angle \& 2 Sides - SAS

Once you have a second angle, you could use Law of Sines again to get the third angle, but it would be quicker to just subtract the two angles you now have from 180°.

$$
180-133-28.5=18.5
$$

$5^{\text {th }}$ Case: Given 1 Angle \& 2 Sides - SAS

Steps for Solving a SAS:
\square Use Law of Cosines to solve for the third side.
\square Use that third side with the known angle to set up a Law of Sines proportion to solve for a second angle.
\square Use the two known angles to subtract from 180 to get
the third angle.
The triangle is SOLVED!

$6^{\text {th }}$ Case: Given 3 Sides - SSS

This is another case for Law of Cosines!

Again, you don't have a known angle and opposite side pair to start the Law of Sines . . .

But the Law of Cosines is set up to solve for a missing side, not a missing angle!

Law of Cosines v. 2

$$
\begin{aligned}
& \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c} \\
& \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
\end{aligned}
$$

Another Version of the same New Tool ()

NOTE: This still uses three sides and one angle.
BUT, this version is rearranged to solve for the angle when all three sides are known!

$6^{\text {th }}$ Case: Given 3 Sides - SSS

Again, start by labeling the triangle, and setting up the corresponding Law of Cosines:

$6^{\text {th }}$ Case: Given 3 Sides - SSS

Since you know all three sides, to get the first angle, set up the corresponding alternate version of Law of Cosines:

$$
\begin{aligned}
& \text { Let } a=32, b=70 \text {, and } c=74 . \\
& \qquad \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}
\end{aligned}
$$

$6^{\text {th }}$ Case: Given 3 Sides - SSS

Solve for the first angle:

Let $a=32, b=70$, and $c=74$.
$\cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$
$\cos B=\frac{32^{2}+74^{2}-70^{2}}{2(32)(74)}$
$\cos B=\frac{1,024+5,476-4,900}{4,736}$
$\cos B \approx 0.3378$
$B \approx 70^{\circ}$

$6^{\text {th }}$ Case: Given 3 Sides - SSS

Now you have angle B and side b to start the Law of Sines to solve for a second angle!

Try It:
$\frac{\sin B}{b}=\frac{\sin C}{c}$
$C \approx 83^{\circ}$
$6^{\text {th }}$ Case: Given 3 Sides - SSS

Once you have a second angle, subtract the two angles you now have from 180° to get angle A.

$$
180-70-83=27
$$

$6^{\text {th }}$ Case: Given 3 Sides - SSS

Steps for Solving a SSS:

\square Use the alternate version of Law of Cosines to solve for one angle.
\square Use that angle with its opposite side to set up Law of Sines to solve for a second angle.

74 in

- Use the two angles to subtract from 180 to get the third angle.

The triangle is SOLVED!

